Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.956
Filtrar
1.
PLoS One ; 19(4): e0293680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652715

RESUMO

Universal and early recognition of pathogens occurs through recognition of evolutionarily conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors and the consequent secretion of cytokines and chemokines. The intrinsic complexity of innate immune signaling and associated signal transduction challenges our ability to obtain physiologically relevant, reproducible and accurate data from experimental systems. One of the reasons for the discrepancy in observed data is the choice of measurement strategy. Immune signaling is regulated by the interplay between pathogen-derived molecules with host cells resulting in cellular expression changes. However, these cellular processes are often studied by the independent assessment of either the transcriptome or the proteome. Correlation between transcription and protein analysis is lacking in a variety of studies. In order to methodically evaluate the correlation between transcription and protein expression profiles associated with innate immune signaling, we measured cytokine and chemokine levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA (mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibility of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5, CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This lack of correlation between transcription and protein expression data may contribute to the discrepancy in the immune profiles reported in various studies. The use of multiomic assessments to achieve a systems-level understanding of immune signaling processes can result in the identification of host biomarker profiles for a variety of infectious diseases and facilitate countermeasure design and development.


Assuntos
Biomarcadores , Células Epiteliais , Lipopolissacarídeos , Pseudomonas aeruginosa , Humanos , Lipopolissacarídeos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Pseudomonas aeruginosa/imunologia , Biomarcadores/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Transcriptoma , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quimiocinas/metabolismo , Quimiocinas/genética
2.
J Innate Immun ; 16(1): 143-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310854

RESUMO

BACKGROUND: Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY: These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES: In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.


Assuntos
Antibacterianos , Biofilmes , Macrófagos , Biofilmes/efeitos dos fármacos , Humanos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Antibacterianos/farmacologia , Infecções Bacterianas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Farmacorresistência Bacteriana , Evasão da Resposta Imune
3.
Front Cell Infect Microbiol ; 13: 1191806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424774

RESUMO

Pseudomonas aeruginosa is a common cause of hospital-acquired infections, including central line-associated bloodstream infections and ventilator-associated pneumonia. Unfortunately, effective control of these infections can be difficult, in part due to the prevalence of multi-drug resistant strains of P. aeruginosa. There remains a need for novel therapeutic interventions against P. aeruginosa, and the use of monoclonal antibodies (mAb) is a promising alternative strategy to current standard of care treatments such as antibiotics. To develop mAbs against P. aeruginosa, we utilized ammonium metavanadate, which induces cell envelope stress responses and upregulates polysaccharide expression. Mice were immunized with P. aeruginosa grown with ammonium metavanadate and we developed two IgG2b mAbs, WVDC-0357 and WVDC-0496, directed against the O-antigen lipopolysaccharide of P. aeruginosa. Functional assays revealed that WVDC-0357 and WVDC-0496 directly reduced the viability of P. aeruginosa and mediated bacterial agglutination. In a lethal sepsis model of infection, prophylactic treatment of mice with WVDC-0357 and WVDC-0496 at doses as low as 15 mg/kg conferred 100% survival against challenge. In both sepsis and acute pneumonia models of infection, treatment with WVDC-0357 and WVDC-0496 significantly reduced bacterial burden and inflammatory cytokine production post-challenge. Furthermore, histopathological examination of the lungs revealed that WVDC-0357 and WVDC-0496 reduced inflammatory cell infiltration. Overall, our results indicate that mAbs directed against lipopolysaccharide are a promising therapy for the treatment and prevention of P. aeruginosa infections.


Assuntos
Anticorpos Antibacterianos , Anticorpos Monoclonais , Lipopolissacarídeos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Camundongos , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Aderência Bacteriana , Carga Bacteriana/imunologia , Convalescença , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
4.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36602863

RESUMO

Cystic fibrosis (CF) is characterized by chronic bacterial infections leading to progressive bronchiectasis and respiratory failure. Pseudomonas aeruginosa (Pa) is the predominant opportunistic pathogen infecting the CF airways. The guanine nucleotide exchange factor Vav3 plays a critical role in Pa adhesion to the CF airways by inducing luminal fibronectin deposition that favors bacteria trapping. Here we report that Vav3 overexpression in CF is caused by upregulation of the mRNA-stabilizing protein HuR. We found that HuR accumulates in the cytoplasm of CF airway epithelial cells and that it binds to and stabilizes Vav3 mRNA. Interestingly, disruption of the HuR-Vav3 mRNA interaction improved the CF epithelial integrity, inhibited the formation of the fibronectin-made bacterial docking platforms, and prevented Pa adhesion to the CF airway epithelium. These findings indicate that targeting HuR represents a promising antiadhesive approach in CF that can prevent initial stages of Pa infection in a context of emergence of multidrug-resistant pathogens.


Assuntos
Fibrose Cística , Proteínas Proto-Oncogênicas c-vav , Pseudomonas aeruginosa , Sistema Respiratório , Humanos , Fibrose Cística/genética , Fibrose Cística/metabolismo , Epitélio/metabolismo , Fibronectinas/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Sistema Respiratório/metabolismo
5.
Sci Rep ; 12(1): 22324, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566282

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen considered a common cause of nosocomial infection with high morbidity and mortality in burn patients. Immunoprophylaxis techniques may lower the mortality rate of patients with burn wounds infected by P. aeruginosa; consequently, this may be an efficient strategy to manage infections caused by this bacterium. Several pathogenic Gram-negative bacteria like P. aeruginosa release outer membrane vesicles (OMVs), and structurally OMV consists of several antigenic components capable of generating a wide range of immune responses. Here, we evaluated the immunogenicity and efficacy of P. aeruginosa PA-OMVs (PA-OMVs) conjugated with the diphtheria toxoid (DT) formulated with alum adjuvant (PA-OMVs-DT + adj) in a mice model of burn wound infection. ELISA results showed that in the group of mice immunized with PA-OMVs-DT + adj conjugated, there was a significant increase in specific antibodies titer compared to non-conjugated PA-OMVs or control groups. In addition, the vaccination of mice with PA-OMVs-DT + adj conjugated generated greater protective effectiveness, as seen by lower bacterial loads, and eightfold decreased inflammatory cell infiltration with less tissue damage in the mice burn model compared to the control group. The opsonophagocytic killing results confirmed that humoral immune response might be critical for PA-OMVs mediated protection. These findings suggest that PA-OMV-DT conjugated might be used as a new vaccine against P. aeruginosa in burn wound infection.


Assuntos
Queimaduras , Toxoide Diftérico , Vacinas contra Pseudomonas , Pseudomonas aeruginosa , Infecção dos Ferimentos , Animais , Camundongos , Proteínas da Membrana Bacteriana Externa/imunologia , Queimaduras/microbiologia , Toxoide Diftérico/imunologia , Pseudomonas aeruginosa/imunologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/prevenção & controle , Vacinas contra Pseudomonas/imunologia
6.
Front Cell Infect Microbiol ; 12: 898796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909964

RESUMO

Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.


Assuntos
Biofilmes , Imunidade Inata , Complexo Antígeno L1 Leucocitário , Pseudomonas aeruginosa , Staphylococcus aureus , Antibacterianos/imunologia , Antibacterianos/farmacologia , Matriz Extracelular de Substâncias Poliméricas/genética , Matriz Extracelular de Substâncias Poliméricas/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/imunologia , Fagocitose , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia
7.
Shock ; 57(5): 703-713, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583912

RESUMO

OBJECTIVE: Interleukin-38 (IL-38), a new type of cytokine, is involved in processes such as tissue repair, inflammatory response, and immune response. However, its function in pneumonia caused by Pseudomonas aeruginosa (P. aeruginosa) is still unclear. METHODS: In this study, we detected circulating IL-38 and cytokines such as IL-1ß, IL-6, IL-17A, TNF-α, IL-8, and IL-10 in adults affected by early stage pneumonia caused by P. aeruginosa. Collected clinical data of these patients, such as the APACHE II score, levels of PCT, and oxygenation index when they entering the ICU. Using P. aeruginosa-induced pneumonia WT murine model to evaluate the effect of IL-38 on Treg differentiation, cell apoptosis, survival, tissue damage, inflammation, and bacterial removal. RESULTS: In clinical research, although IL-38 is significantly increased during the early stages of clinical P. aeruginosa pneumonia, the concentration of IL-38 in the serum of patients who died with P. aeruginosa pneumonia was relatively lower than that of surviving patients. It reveals IL-38 may insufficiently secreted in patients who died with P. aeruginosa pneumonia. Besides, the serum IL-38 level of patients with P. aeruginosa pneumonia on the day of admission to the ICU showed significantly positive correlations with IL-10 and the PaO2/FiO2 ratio but negative correlations with IL-1ß, IL-6, IL-8, IL-17, TNF-α, APACHE II score, and PCT In summary, IL-38 might be a molecule for adjuvant therapy in P. aeruginosa pneumonia. In experimental animal models, first recombinant IL-38 improved survival, whereas anti-IL-38 antibody reduced survival in the experimental pneumonia murine model. Secondly, IL-38 exposure reduced the inflammatory response, as suggested by the lung injury, and reduced cytokine levels (IL-1ß, IL-6, IL- 17A, TNF-α, and IL-8, but not IL-10). It also increased bacterial clearance and reduced cell apoptosis in the lungs. Furthermore, IL-38 was shown to reduce TBK1 expression in vitro when naive CD4+ T lymphocytes were differentiated to Tregs and played a protective role in P. aeruginosa pneumonia. CONCLUSIONS: To summarize, the above findings provide additional insights into the mechanism of IL-38 in the treatment of P. aeruginosa pneumonia.


Assuntos
Interleucinas , Pneumonia , Infecções por Pseudomonas , Animais , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Interleucina-1/imunologia , Interleucinas/sangue , Pulmão/imunologia , Camundongos , Pneumonia/imunologia , Pneumonia/microbiologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Fator de Necrose Tumoral alfa
8.
FASEB J ; 36(1): e22090, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907595

RESUMO

Despite many advances in infection control practices, including prophylactic antibiotics, surgical site infections (SSIs) remain a significant cause of morbidity, prolonged hospitalization, and death worldwide. Our innate immune system possesses a multitude of powerful antimicrobial strategies which make it highly effective in combating bacterial, fungal, and viral infections. However, pathogens use various stealth mechanisms to avoid the innate immune system, which in turn buy them time to colonize wounds and damage tissues at surgical sites. We hypothesized that immunomodulators that can jumpstart and activate innate immune responses at surgical sites, would likely reduce infection at surgical sites. We used three immunomodulators; fMLP (formyl-Methionine-Lysine-Proline), CCL3 (MIP-1α), and LPS (Lipopolysaccharide), based on their documented ability to elicit strong inflammatory responses; in a surgical wound infection model with Pseudomonas aeruginosa to evaluate our hypothesis. Our data indicate that one-time topical treatment with these immunomodulators at low doses significantly increased proinflammatory responses in infected and uninfected surgical wounds and were as effective, (or even better), than a potent prophylactic antibiotic (Tobramycin) in reducing P. aeruginosa infection in wounds. Our data further show that immunomodulators did not have adverse effects on tissue repair and wound healing processes. Rather, they enhanced healing in both infected and uninfected wounds. Collectively, our data demonstrate that harnessing the power of the innate immune system by immunomodulators can significantly boost infection control and potentially stimulate healing. We propose that topical treatment with these immunomodulators at the time of surgery may have therapeutic potential in combating SSI, alone or in combination with prophylactic antibiotics.


Assuntos
Fatores Imunológicos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/imunologia , Infecção da Ferida Cirúrgica/tratamento farmacológico , Animais , Avaliação de Medicamentos , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/imunologia , Infecção da Ferida Cirúrgica/imunologia , Infecção da Ferida Cirúrgica/microbiologia
9.
Cell Host Microbe ; 30(1): 31-40.e5, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932986

RESUMO

Phages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phage-derived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.


Assuntos
Imunidade Adaptativa/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Sistemas CRISPR-Cas/imunologia , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Bacteriófagos/genética , Genoma Bacteriano , Humanos , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/imunologia
10.
Mol Immunol ; 141: 258-264, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896925

RESUMO

BACKGROUND: Pseudomonas aeruginosa sepsis is associated with unacceptably high mortality and, for many of those who survive, long-term morbidity. The aims of this study were to production of IgY against chimeric protein pilQ-pilA-DSL region and killed- whole cell Pseudomonas aeruginosa O1 (PAO1) strain and their efficacy for immunoprophylaxis of sepsis caused by P. aeruginosa in a rabbit model. METHODS: Specific IgY was obtained by immunization of hens. The purity of IgY was determined by SDS-PAGE analysis. The effect of IgY on growth and hydrophobicity of P. aeruginosa were performed through time-kill assay and microbial adhesion to hydrocarbons test (MATH), respectively. The efficacy of specific IgYs was examined against P. aeruginosa sepsis in a rabbit model. The rabbits were monitored for 72 h to record physiological characters and survival. Hematologic factors, C-reactive protein, pro-inflammatory cytokines, and bacterial count from blood and solid organs were measured, periodically. RESULTS: We found that the growth inhibitory effect of the anti- killed whole cell IgY was higher than anti-pilQ-pilA IgY (P < 0.001). The hydrophobicity effect of PAO1 increased when bacteria were opsonized by anti- killed whole cell IgY while the hydrophobicity activity was decreased following incubation of PAO1 with anti-pilQ-pilA IgY in a broth medium (P < 0.001). Following intravenous (IV) administration of produced IgYs, no significant difference was observed in the survival, decrease in inflammatory mediators and clinical symptoms between the groups 48h post infection (P > 0.05). Moreover, no considerable decrease was observed in the bacterial load of blood, lungs and kidneys in rabbits treated with specific IgYs and control groups (P > 0.05). No bacteria were found in the spleen and liver samples from infected rabbits. CONCLUSION: Although produced IgYs had a good immunoreactivity, IV immunization of IgYs was not protective against P. aeruginosa sepsis in the rabbit model. Further studies are needed to assess the immune response and decreasing mortality rate using the rabbit sepsis model.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Fímbrias/imunologia , Imunoglobulinas/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Recombinantes de Fusão/imunologia , Sepse/imunologia , Animais , Carga Bacteriana/imunologia , Galinhas/imunologia , Modelos Animais de Doenças , Imunização/métodos , Imunização Passiva/métodos , Masculino , Infecções por Pseudomonas/microbiologia , Coelhos , Sepse/microbiologia
11.
Front Immunol ; 12: 790574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899759

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.


Assuntos
Metabolismo Energético , Pulmão/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Infecções Respiratórias/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Adaptação Fisiológica , Animais , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Succinatos/metabolismo
12.
Front Immunol ; 12: 745326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621276

RESUMO

Cystic Fibrosis (CF) is a genetic disease that causes chronic and severe lung inflammation and infection associated with high rates of mortality. In CF, disrupted ion exchange in the epithelium results in excessive mucus production and reduced mucociliary clearance, leading to immune system exacerbation and chronic infections with pathogens such as P. aeruginosa and S. aureus. Constant immune stimulation leads to altered immune responses including T cell impairment and neutrophil dysfunction. Specifically, CF is considered a Th17-mediated disease, and it has been proposed that both P. aeruginosa and a subset of neutrophils known as granulocytic myeloid suppressor cells (gMDSCs) play a role in T cell suppression. The exact mechanisms behind these interactions are yet to be determined, but recent works demonstrate a role for arginase-1. It is also believed that P. aeruginosa drives gMDSC function as a means of immune evasion, leading to chronic infection. Herein, we review the current literature regarding immune suppression in CF by gMDSCs with an emphasis on T cell impairment and the role of P. aeruginosa in this dynamic interaction.


Assuntos
Fibrose Cística/imunologia , Granulócitos/imunologia , Evasão da Resposta Imune , Células Supressoras Mieloides/imunologia , Pseudomonas aeruginosa/imunologia , Células Th17/imunologia , Arginase/fisiologia , Fibrose Cística/complicações , Citotoxicidade Imunológica , Humanos , Neutrófilos/imunologia , Neutrófilos/patologia , Infecção Persistente , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/imunologia , Linfócitos T Reguladores/imunologia
13.
mSphere ; 6(5): e0069921, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34612675

RESUMO

Along with surging threats and antibiotic resistance of Pseudomonas aeruginosa in health care settings, it is imperative to develop effective vaccines against P. aeruginosa infection. In this study, we used an Asd (aspartate-semialdehyde dehydrogenase)-based balanced-lethal host-vector system of a recombinant Yersinia pseudotuberculosis mutant to produce self-adjuvanting outer membrane vesicles (OMVs). The OMVs were used as a carrier to deliver the heterologous PcrV-HitAT (PH) fusion antigen of P. aeruginosa for vaccine evaluation. Intramuscular vaccination with OMVs carrying the PH antigen (referred to rOMV-PH) afforded 73% protection against intranasal challenge with 5 × 106 (25 50% lethal doses) of the cytotoxic PA103 strain and complete protection against a noncytotoxic PAO1 strain. In contrast, vaccination with the PH-deficient OMVs or PH antigen alone failed to offer effective protection against the same challenge. Immune analysis showed that the rOMV-PH vaccination induced potent humoral and Th1/Th17 responses compared to the PH vaccination. The rOMV-PH vaccination rapidly cleared P. aeruginosa burdens with coordinated production of proinflammatory cytokines in mice. Moreover, antigen-specific CD4+ and CD8+ T cells and their producing cytokines (tumor necrosis factor alpha and interleukin-17A), rather than antibodies, were essential for protection against pneumonic P. aeruginosa infection. Our studies demonstrated that the recombinant Y. pseudotuberculosis OMVs delivering heterologous P. aeruginosa antigens could be a new promising vaccine candidate for preventing the spread of drug-resistant P. aeruginosa. IMPORTANCE Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/uso terapêutico , Animais , Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/sangue , Feminino , Imunização , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pseudomonas/imunologia
14.
J Immunol ; 207(11): 2868-2877, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34686582

RESUMO

The IL-36 cytokines are known to play various roles in mediating the immune response to infection in a tissue- and pathogen-dependent manner. The present study seeks to investigate the role of IL-36R signaling in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. IL-36α-/-, IL-36γ-/-, and IL-36R-/- mice had significantly more severe keratitis than wild-type mice. At six hours postinfection, IL-36α pretreatment augmented P. aeruginosa-induced expression of IL-1Ra, IL-36γ, LCN2, and S100A8/A9. At one day postinfection, exogenous IL-36α suppressed, whereas IL-36α deficiency promoted, the expression of IL-1ß. At three days postinfection, exogenous IL-36α suppressed Th1 but promoted Th2 immune response. IL-36α stimulated the infiltration of IL-22-expressing immune cells, and IL-22 neutralization resulted in more severe keratitis. IL-36α alone stimulated dendritic cell infiltration in B6 mouse corneas. Taken together, our study suggests that IL-36R signaling plays a protective role in the pathogenesis of P. aeruginosa keratitis by promoting the innate immune defense, Th2, and/or Th22/IL-22 immune responses. Exogenous IL-36α might be a potential therapy for improving the outcome of P. aeruginosa keratitis.


Assuntos
Córnea/imunologia , Interleucina-1/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Interleucina-1/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Signal Transduct Target Ther ; 6(1): 353, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593766

RESUMO

Pseudomonas aeruginosa infection continues to be a major threat to global public health, and new safe and efficacious vaccines are needed for prevention of infections caused by P. aeruginosa. X-ray irradiation has been used to prepare whole-cell inactivated vaccines against P. aeruginosa infection. However, the immunological mechanisms of X-ray-inactivated vaccines are still unclear and require further investigation. Our previous study found that an X-ray-inactivated whole-cell vaccine could provide protection against P. aeruginosa by boosting T cells. The aim of the present study was to further explore the immunological mechanisms of the vaccine. Herein, P. aeruginosa PAO1, a widely used laboratory strain, was utilized to prepare the vaccine, and we found nucleic acids and 8-hydroxyguanosine in the supernatant of X-ray-inactivated PAO1 (XPa). By detecting CD86, CD80, and MHCII expression, we found that XPa fostered dentritic cell (DC) maturation by detecting. XPa stimulated the cGAS-STING pathway as well as Toll-like receptors in DCs in vitro, and DC finally underwent apoptosis and pyroptosis after XPa stimulation. In addition, DC stimulated by XPa induced CD8+ T-cell proliferation in vitro and generated immunologic memory in vivo. Moreover, XPa vaccination induced both Th1 and Th2 cytokine responses in mice and reduced the level of inflammatory factors during infection. XPa protected mice in pneumonia models from infection with PAO1 or multidrug-resistant clinical isolate W9. Chronic obstructive pulmonary disease (COPD) mice immunized with XPa could resist PAO1 infection. Therefore, a new mechanism of an X-ray-inactivated whole-cell vaccine against P. aeruginosa infection was discovered in this study.


Assuntos
Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Infecções por Pseudomonas/imunologia , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Infecções por Pseudomonas/genética , Vacinas contra Pseudomonas/farmacologia , Células RAW 264.7 , Transdução de Sinais/genética
16.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544549

RESUMO

Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Administração Intranasal , Transferência Adotiva , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Imunidade Inata/efeitos dos fármacos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacinação , Vacinas de Produtos Inativados/administração & dosagem
17.
Infect Immun ; 89(12): e0041221, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34460286

RESUMO

Pseudomonas aeruginosa is one of the principal pathogens implicated in respiratory infections of patients with cystic fibrosis (CF) and non-CF bronchiectasis. Previously, we demonstrated that impaired serum-mediated killing of P. aeruginosa was associated with increased severity of respiratory infections in patients with non-CF bronchiectasis. This inhibition was mediated by high titers of O-antigen-specific IgG2 antibodies that cloak the surface of the bacteria, blocking access to the membrane. Infection-related symptomatology was ameliorated in patients by using plasmapheresis to remove the offending antibodies. To determine if these inhibitory "cloaking antibodies" were prevalent in patients with CF, we investigated 70 serum samples from patients with P. aeruginosa infection and 5 from those without P. aeruginosa infection. Of these patients, 32% had serum that inhibited the ability of healthy control serum to kill P. aeruginosa. Here, we demonstrate that this inhibition of killing requires O-antigen expression. Furthermore, we reveal that while IgG alone can inhibit the activity of healthy control serum, O-antigen-specific IgA in patient sera can also inhibit serum-killing. We found that antibody affinity, not just titer, was also important in the inhibition of serum-mediated killing. These studies provide novel insight into cloaking antibodies in human infection and may provide further options in CF and other diseases for treatment of recalcitrant P. aeruginosa infections.


Assuntos
Anticorpos Antibacterianos/imunologia , Fibrose Cística/complicações , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Lipopolissacarídeos/imunologia , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/imunologia , Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue
18.
J Heart Lung Transplant ; 40(9): 951-959, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226118

RESUMO

BACKGROUND: Chronic Lung Allograft Dysfunction (CLAD) limits long-term survival following lung transplantation. Colonization of the allograft by Pseudomonas aeruginosa is associated with an increased risk of CLAD and inferior overall survival. Recent experimental data suggests that 'cloaking' antibodies targeting the O-antigen of the P. aeruginosa lipopolysaccharide cell wall (cAbs) attenuate complement-mediated bacteriolysis in suppurative lung disease. METHODS: In this retrospective cohort analysis of 123 lung transplant recipients, we evaluated the prevalence, risk factors and clinical impact of serum cAbs following transplantation. RESULTS: cAbs were detected in the sera of 40.7% of lung transplant recipients. Cystic fibrosis and younger age were associated with increased risk of serum cAbs (CF diagnosis, OR 6.62, 95% CI 2.83-15.46, p < .001; age at transplant, OR 0.69, 95% CI 0.59-0.81, p < .001). Serum cAbs and CMV mismatch were both independently associated with increased risk of CLAD (cAb, HR 4.34, 95% CI 1.91-9.83, p < .001; CMV mismatch (D+/R-), HR 5.40, 95% CI 2.36-12.32, p < .001) and all-cause mortality (cAb, HR 2.75, 95% CI 1.27-5.95, p = .010, CMV mismatch, HR 3.53, 95% CI 1.62-7.70, p = .002) in multivariable regression analyses. CONCLUSIONS: Taken together, these findings suggest a potential role for 'cloaking' antibodies targeting P. aeruginosa LPS O-antigen in the immunopathogenesis of CLAD.


Assuntos
Anticorpos Antibacterianos/sangue , Transplante de Pulmão/efeitos adversos , Pseudomonas aeruginosa/imunologia , Transplantados , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
19.
Infect Immun ; 89(10): e0006721, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310887

RESUMO

To antagonize infection of pathogenic bacteria in soil and confer increased survival, Caenorhabditis elegans employs innate immunity and behavioral avoidance synchronously as the two main defensive strategies. Although both biological processes and their individual signaling pathways have been partially elucidated, knowledge of their interrelationship remains limited. The current study reveals that deficiency of innate immunity triggered by mutation of the classic immune gene pmk-1 promotes avoidance behavior in C. elegans and vice versa. Restoration of pmk-1 expression using the tissue-specific promoters suggested that the functional loss of both intestinal and neuronal pmk-1 is necessary for the enhanced avoidance. Additionally, PMK-1 colocalized with the E3 ubiquitin ligase HECW-1 in OLL neurons and regulated the expressional level of the latter, which consequently affected the production of NPR-1, a G-protein-coupled receptor (GPCR) homologous to the mammalian neuropeptide Y receptor, in RMG neurons in a non-cell-autonomous manner. Collectively, our study illustrates that once the innate immunity is impaired when C. elegans antagonizes bacterial infection, the other defensive strategy of behavioral avoidance can be enhanced accordingly via the HECW-1/NPR-1 module, suggesting that GPCRs in neural circuits may receive the inputs from the immune system and integrate those two systems for better adapting to the real-time status.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Pseudomonas aeruginosa/imunologia , Receptores de Neuropeptídeo Y/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Proteínas Quinases Ativadas por Mitógeno/imunologia , Mutação/imunologia , Neurônios/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia
20.
Infect Immun ; 89(11): e0039621, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34310892

RESUMO

To develop an effective Pseudomonas aeruginosa outer-membrane-vesicle (OMV) vaccine, we eliminated multiple virulence factors from a wild-type (WT) P. aeruginosa strain, PA103, to generate a recombinant strain, PA-m14. Strain PA-m14 was tailored with a pSMV83 plasmid carrying the pcrV-hitAT fusion gene to produce OMVs. The recombinant OMVs (termed OMV-PH) enclosed increased amounts of the PcrV-HitAT bivalent antigen (PH) and exhibited lower toxicity than did the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 106 CFU (∼30 50% lethal doses [LD50]) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses over those with PH or OMV-NA immunization in mice and that these more-potent responses can effectively hinder P. aeruginosa infection. Undiluted antisera from OMV-PH-immunized mice displayed significantly more opsonophagocytic killing of WT PA103 than antisera from PH antigen- or OMV-NA-immunized mice. Moreover, OMV-PH immunization afforded significant antibody-independent cross-protection to mice against PAO1 and the AMC-PA10 clinical isolate. Taking our findings together, the recombinant P. aeruginosa OMV delivering the bivalent PH antigen exhibits high immunogenicity and may be a promising next-generation vaccine candidate against P. aeruginosa infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Receptor 4 Toll-Like/fisiologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...